How do you integrate #int x(1-x)sin(px) dx# using integration by parts?
1 Answer
Explanation:
#I=int(x^2-x)sin(px)dx#
Integration takes the form:
For this case, we will let:
#{(u=x^2-x" "=>" "du=(2x-1)dx),(dv=sin(px)dx" "=>" "v=-cos(px)/p):}#
Note that going to
Plugging these into the integration by parts formula, we see that:
#I=-((x^2-x)cos(px))/p-int(2x-1)(-cos(px))/pdx#
Simplifying:
#I=((x-x^2)cos(px))/p+1/p int(2x-1)cos(px)dx#
We will apply integration by parts once more for the remaining integral.
#{(u=2x-1" "=>" "du=2dx),(dv=cos(px)dx" "=>" "v=sin(px)/p):}#
Note that like before, integrating
Replacing
#I=((x-x^2)cos(px))/p+1/p[((2x-1)sin(px))/p-int(2sin(px))/pdx]#
Simplifying:
#I=((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2-2/p^2intsin(px)#
This type of integration has already been performed twice before:
#I=((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2-2/p^2(-cos(px)/p)#
#I=((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2+(2cos(px))/p^3+C#