How do you integrate #int sin(lnx)# by integration by parts method?

1 Answer
Oct 8, 2016

Let #I = int sin(lnx) dx#

We need to decide (guess) whether to use #sin(lnx)#as #u# or #dv#. It turns out that either will work.

Method 1
Let #u = sin(lnx)# and #dv = dx#.

Then #du = 1/x cos(lnx) dx# and #v = x#

#I = uv-intvdu#

# = xsin(lnx)-intcos(lnx) dx#

Repeat with #u = cos(lnx)# and #dv = dx#,

so #du = -1/xsin(lnx)# and #v = x#.

#I = xsin(lnx)-[ xcos(lnx)- int -sin(lnx) dx ]#

so

#I = xsin(lnx)- xcos(lnx)- underbrace(int sin(lnx) dx)_I #

#2I = xsin(lnx)- xcos(lnx)#

#I = 1/2( xsin(lnx)- xcos(lnx) )#

Method 2

Let #I = int sin(lnx) dx#

In order to use #sin(lnx) dx# in #dv#, we'll need to be able to integrate #dv#.
We could use substitution if we had the derivative of #lnx# as a factor, so we'll introduce it.

#I = int x sin(lnx) 1/x dx#

Let #u = x# and #dv = sin(lnx) 1/x dx#.

Then #du =dx# and #v = -cos(lnx)#

#I = uv-intvdu#

# = -xcos(lnx)+int cos(lnx) dx#

We'll use parts again. (And we'll hope that it works. If it doesn't, we'll try something else.)

# = -xcos(lnx)+int x cos(lnx) 1/x dx#

Let #u = x# and #dv = cos(lnx) 1/x dx#.

Then #du =dx# and #v = sin(lnx)#

#I = -xcos(lnx)+[xsin(lnx)-underbrace(intsin(lnx) dx)_I]#

#2I = -xcos(lnx)+xsin(lnx)#

#I = 1/2( xsin(lnx)- xcos(lnx) )#