How do you find the equation of a line tangent to the function #y=1/(2-x)# at x=-1?

1 Answer
Oct 8, 2016

Using the first derivative #(dy)/(dx)# we can find the gradient of the tangent, and then use point-gradient formula #y-y_1=m(x-x_1)#

First, finding #(y_1,x_1)# for where #x=-1#
#y=1/(2-(-1))=1/3#
So #(x_1,y_1)# is #(-1,1/3)#

Now, deriving the function,
#y=(2-x)^-1->#changing to index form
#(dy)/(dx)=-(2-x)^-2#
Subbing in #x=-1# to #(dy)/(dx)# to find the gradient of the tangent,
#m=-(2-(-1))^-2=-1/9#

Subbing #(x_1,y_1)# and #m# into the point-gradient formula,

Eq of tangent: #y-1/3=-1/9(x+1)#
#9y-3=-x-1#

#:.x+9y-2=0# is the equation of the tangent to the curve at #x=-1#