How do you integrate #int (lnx)^2# by integration by parts method?

2 Answers
Oct 10, 2016

#x(lnx)^2-2xlnx+2x+C#

Explanation:

#I=int(lnx)^2dx#

Integration by parts takes the form: #intudv=uv-intvdu#

So, for the given integral, let:

#{(u=(lnx)^2" "=>" "du=(2lnx)/xdx),(dv=dx" "=>" "v=x):}#

Plugging these into the integration by parts formula, this becomes:

#I=x(lnx)^2-intx((2lnx)/x)dx#

#I=x(lnx)^2-2intlnxdx#

To solve this integral, we will reapply integration by parts:

#{(u=lnx" "=>" "du=1/xdx),(dv=dx" "=>" "v=x):}#

Thus, this becomes:

#I=x(lnx)^2-2[xlnx-intx(1/x)dx]#

#I=x(lnx)^2-2xlnx+2intdx#

#I=x(lnx)^2-2xlnx+2x+C#

Oct 10, 2016

# :. int (lnx)^2 dx = x(lnx)^2-2xlnx +2x +c #

Explanation:

Remember the formula for IBP: #int u(dv)/dxdx=uv-intv(du)/dxdx#

Let #u=lnx=>(du)/dx=1/x#
Let #(dv)/dx=lnx=>v=intlndx=xlnx - x# (see additional notes)

Substitute into the IBP equation:
# int (lnx)(lnx) dx = (lnx)(xlnx-x) - int (xlnx-x)1/x dx#
# :. int (lnx)^2 dx = x(lnx)^2-xlnx - int (lnx-1 )dx #
# :. int (lnx)^2 dx = x(lnx)^2-xlnx - (xlnx-x -x) +c #
# :. int (lnx)^2 dx = x(lnx)^2-xlnx - xlnx +2x +c #
# :. int (lnx)^2 dx = x(lnx)^2-2xlnx +2x +c #

Additional Notes:
How do you find #intlndx=xlnx - x#. Firstly its is extremely helpful to learn this result, but if you can't or you need to prove it then you need to use IBP again:

Let #u=lnx=>(du)/dx=1/x#
Let #(dv)/dx=1=>v=x#
Substitute into the IBP equation:
# int (lnx)(1)dx=(lnx)(x)-int(x*1/x)dx #
# :. int lnxdx=xlnx-int(1)dx #
# :. int lnxdx=xlnx-x # #(+c) #