How do you integrate #int (lnx)^2# by integration by parts method?
2 Answers
Explanation:
#I=int(lnx)^2dx#
Integration by parts takes the form:
So, for the given integral, let:
#{(u=(lnx)^2" "=>" "du=(2lnx)/xdx),(dv=dx" "=>" "v=x):}#
Plugging these into the integration by parts formula, this becomes:
#I=x(lnx)^2-intx((2lnx)/x)dx#
#I=x(lnx)^2-2intlnxdx#
To solve this integral, we will reapply integration by parts:
#{(u=lnx" "=>" "du=1/xdx),(dv=dx" "=>" "v=x):}#
Thus, this becomes:
#I=x(lnx)^2-2[xlnx-intx(1/x)dx]#
#I=x(lnx)^2-2xlnx+2intdx#
#I=x(lnx)^2-2xlnx+2x+C#
Explanation:
Remember the formula for IBP:
Let
Let
Substitute into the IBP equation:
Additional Notes:
How do you find
Let
Let
Substitute into the IBP equation: