How do you evaluate the integral #int x/(x^2-5x+6)# from 0 to 2?

1 Answer
Oct 13, 2016

The definite integral is undefined on the requested range since #ln 0# is undefined.

Explanation:

#x/(x^2-5x+6) = x/((x-3)(x-2))#

#color(white)(x/(x^2-5x+6)) = (3(x-2)-2(x-3))/((x-3)(x-2))#

#color(white)(x/(x^2-5x+6)) = 3/(x-3)-2/(x-2)#

So:

#int_0^2 x/(x^2-5x+6) dx = int_0^2 3/(x-3) - 2/(x-2) dx#

#color(white)(int_0^2 x/(x^2-5x+6) dx) = [color(white)(1/1)3 ln abs(x-3) - 2 ln abs(x-2)color(white)(1/1)]_0^2#

#color(white)(int_0^2 x/(x^2-5x+6) dx) = (3 ln abs(color(blue)(2)-3) - 2 ln abs(color(blue)(2)-2)) - (3 ln abs(color(blue)(0)-3) - 2 ln abs(color(blue)(0)-2))#

#color(white)(int_0^2 x/(x^2-5x+6) dx) = (3 ln 1 - 2 ln 0) - (3 ln 3 - 2 ln 2)#

which is undefined, since #ln 0# is undefined.