How do you solve #ln(x+5)=ln(x-1)-ln(x+1)#?
1 Answer
Using the Complex logarithm:
#x = -2# or#x = -3#
Explanation:
Add
#ln(x-1) = ln(x+5)+ln(x+1)#
#color(white)(ln(x-1)) = ln((x+5)(x+1))#
#color(white)(ln(x-1)) = ln(x^2+6x+5)#
Take the exponent base
#x-1 = x^2+6x+5#
Subtract
#0 = x^2+5x+6 = (x+2)(x+3)#
So
Note that these values result in taking logarithms of negative values.
So the original equation has no solutions using the Real valued logarithm.
However, it does give us solutions using the Complex logarithm:
#ln((color(blue)(-2))-1) - ln((color(blue)(-2))+1) = ln(-3) - ln(-1)#
#color(white)(ln((color(white)(-2))-1) - ln((color(white)(-2))+1)) = (ln(3) + pii) - (ln(1) + pii)#
#color(white)(ln((color(white)(-2))-1) - ln((color(white)(-2))+1)) = ln(3)#
#color(white)(ln((color(white)(-2))-1) - ln((color(white)(-2))+1)) = ln((color(blue)(-2))+5)#
#ln((color(blue)(-3))-1) - ln((color(blue)(-3))+1) = ln(-4) - ln(-2)#
#color(white)(ln((color(white)(-3))-1) - ln((color(white)(-3))+1)) = (ln(4) + pii) - (ln(2) + pii)#
#color(white)(ln((color(white)(-3))-1) - ln((color(white)(-3))+1)) = ln(4/2)#
#color(white)(ln((color(white)(-3))-1) - ln((color(white)(-3))+1)) = ln(2)#
#color(white)(ln((color(white)(-3))-1) - ln((color(white)(-3))+1)) = ln((color(blue)(-3))+5)#
So both