A line segment has endpoints at #(5 ,6 )# and #(2 , 1)#. The line segment is dilated by a factor of #3 # around #(6 , 2)#. What are the new endpoints and length of the line segment?

1 Answer
Oct 19, 2016

#color(blue)("Point A'"->(x,y)=(-6,-1))#
#color(blue)("Point B'"->(x,y)=(3,14))#
#color(blue)(L=sqrt(9^2+15^2) = sqrt(306))#

Explanation:

Dilation is a fancy word for scale. As soon as you talk about scale your are dealing with ratios. Dilation that is positive increases the magnitude. Assuming positive dilation as not indicated otherwise.

Tony B

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine point B' ")" "larr# B prime

#(OB)/(OB') = 1/3#

#(x_O-x_B)/ (x_O-x_B') =1/3#

#=>3(x_O-x_B)=x_O-x_B'#

#=>3(6-5)=6-x_B'#

#x_B'=3#
.......................................................................................

#(y_O-y_B)/ (y_O-y_B') =1/3#

#=>3(y_O-y_B)=y_O-y_B'#

#=>3(2-6)=2-y_B'#

#y_B'=14#

#color(blue)("Point B'"->(x,y)=(3,14))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine point A' ")" "larr# A prime

#(OA)/(OA') = 1/3#

#(x_O-x_A)/ (x_O-x_A') =1/3#

#=>3(x_O-x_A)=x_O-x_A'#

#=>3(6-2)=6-x_A'#

#x_A'=-6#
............................................................................

#(y_O-y_A)/ (y_O-y_A') =1/3#

#=>3(y_O-y_A)=y_O-y_A'#

#=>3(2-1)=2-y_A'#

#y_A'=-1#

#color(blue)("Point A'"->(x,y)=(-6,-1))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine length of A'B'")#

#L=sqrt((x_B'-x_A')^2+(y_B'-y_B')^2)#

#color(blue)(L=sqrt(9^2+15^2) = sqrt(306))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Check")#

#(AB)/(A'B') = 1/3#

Length #AB = sqrt((5-2)^2+(6-1)^2) =sqrt( 34)#

#LHS ->RHS#

#1/3->sqrt(34)/(sqrt(306))=1/3#

#LHS=RHS color(red)(larr" True")#