What is the equation of the line tangent to #f(x)=-x^2 + 7x - 1 # at #x=-1#?

1 Answer
Oct 21, 2016

#y=9x#

Explanation:

The equation of the tangent in #color(blue)"point-slope form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y-y_1=m(x-x_1))color(white)(2/2)|)))#
where m represents the slope and # (x_1,y_1)" a point on the line"#

We require to find m and # (x_1,y_1)#

Given f(x) then #f'(a)=m_"tgt"# where a is the x-coordinate of a point on f(x).

#rArrf'(x)=-2x+7#

and #f'(-1)=-2(-1)+7=9=m_"tgt"#

Substitute x = - 1 into f(x) to obtain coordinates of point on tangent.

#f(-1)=-(-1)^2+7(-1)-1=-9#

Using #m=9" and " (x_1,y_1)=(-1,-9)#

#y+9=9(x+1)rArry+9=9x+9#

#rArry=9x" is the equation of the tangent"#