How do you find the limit of #(8x^3 + 5x^2)^(1/3) -2x # as x approaches infinity?
1 Answer
Rationalize and simplify.
Explanation:
Recall that
This allows us to rationalize
We'll do that with
# = ((root(3)(8x^2+5x^2))^3 - (2x)^3)/ (((root(3)(8x^3 + 5x^2))^2+2x root(3)(8x^3 + 5x^2) + (2x)^2))#
# = (8x^2+5x^2 - 8x^3)/ (((root(3)(8x^3 + 5x^2))^2+2x root(3)(8x^3 + 5x^2) + 4x^2))#
# = (5x^2)/ (((root(3)(8x^3 + 5x^2))^2+2x root(3)(8x^3 + 5x^2) + 4x^2))#
Now we'll do some work in the denominator to factor out an
For
# = (5x^2)/ (((root(3)(x^3(8 + 5/x)))^2+2x root(3)(x^3(8 + 5/x) + 4x^2))#
# = (5x^2)/ (((xroot(3)((8 + 5/x)))^2+2x^2 root(3)(8 + 5/x) + 4x^2))#
# = (5x^2)/ (x^2((root(3)((8 + 5/x)))^2+2 root(3)(8 + 5/x) + 4))#
# = 5/ ((root(3)((8 + 5/x)))^2+2 root(3)(8 + 5/x) + 4)# .
Evaluating the limit as
# = 5/((root(3)((8 + 0)))^2+2 root(3)(8 + 0) + 4)#
# = 5/(4+4+4) = 5/12# .