What is the equation of the tangent line of #f(x) =x-4/e^x+x^2/e^x-1# at #x=4#?

1 Answer
Oct 22, 2016

#y = -8e^-4x + 3 + 44e^-4#

Explanation:

Given:

#y = f(x) = x - 4e^-x + x^2e^-x - 1#

Evaluate a #x = 4# so that we know a point on the tangent line

#y = f(4) = 4 - 4e^-4 + (4)^2e^-4 - 1#

#y = 3 + 12e^-4#

The point for the tangent line is #(4, 3 + 12e^-4)#

Compute the first derivative:

#f'(x) = 4e^-x + 2xe^-x - x^2e^-x#

Evaluate at #x = 4#:

#f'(4) = 4e^-4 + 2(4)e^-x - (4)^2e^-4 = -8e^-4#

The slope #m = -8e^-4#

Using the point-slope form of the equation of a line:

#y - (3 + 12e^-4) = -8e^-4(x - 4)#

#y - (3 + 12e^-4) = -8e^-4x + 32e^-4#

#y = -8e^-4x + 3 + 44e^-4#