How do you find the derivative of #y=arcsin(2x+1)#?

1 Answer
Oct 26, 2016

# dy/dx=1/sqrt(-x^2-x) #

Explanation:

rewrite #y=arcsin(2x+1)# as #siny=2x+1#

Differentiating implicitly we get;
# cosydy/dx=2 #
# :. dy/dx=2/cosy #

Using #sin^2A+cos^2A-=1 => (2x+1)^2+cos^2y=1#
# :. 4x^2+4x+1+cos^2y=1#
# :. cos^2y=-4x^2-4x#
# :. cos^2y=4(-x^2-x)#
# cosy=2sqrt(-x^2-x) #

and so # :. dy/dx=2/cosy => dy/dx=2/(2sqrt(-x^2-x)) #
Hence, # dy/dx=1/sqrt(-x^2-x) #