How do you evaluate the definite integral #int (3/x^2-1)dx# from [1,2]?

1 Answer
Oct 27, 2016

I found: #1/2#

Explanation:

Let us write our integral in a slight different way to make the integraton easier:
#int3x^-2dx-int1dx=#
now we integrate using our usual rules of integration to get:
#=3x^(-2+1)/(-2+1)-x=-3x^-1-x=-3/x-x#
we didn't add the constant because we now apply the limits of integration #[1,2]# evaluating our result for #x# in both points and subtracting the values:
when #x=2# we get:
#-3/2-2=-7/2#

when #x=1# we get:
#-3/1-1=-4#

Subtract them: #(-7/2)-(-4)=(-7+8)/2=1/2#

so we get that:
#int_1^2(3/x^2-x)dx=1/2#