How do you integrate #int cossqrtx# using integration by parts?
1 Answer
Oct 27, 2016
Explanation:
#I=intcos(sqrtx)dx#
We will first use the substitution
#I=intcos(t)(2tdt)=2inttcos(t)dt#
We should now use integration by parts, which takes the form
#{(u=t" "=>" "du=dt),(dv=cos(t)dt" "=>" "v=sin(t)):}#
So:
#I=2[tsin(t)-intsin(t)dt]#
Since
#I=2[tsin(t)+cos(t)]+C#
Since
#I=2sqrtxsin(sqrtx)+2cos(sqrtx)+C#