Expand:
#(x^2 - 2)/((x + 1)(x^2 + 3)) = A/(x + 1) + (Bx + C)/(x^2 + 3)#
#x^2 - 2 = A(x^2 + 3) + (Bx + C)(x + 1)#
Let x = -1 to make B and C disappear:
#-1^2 - 2 = A(-1^2 + 3)#
#-1 = 4A#
#A = -1/4#
#x^2 - 2 = -1/4(x^2 + 3) + (Bx + C)(x + 1)#
Let x = 0 to make B disappear:
#- 2 = -1/4(3) + (C)(1)#
#C = -5/4#
#x^2 - 2 = -1/4(x^2 + 3) + (Bx -5/4)(x + 1)#
Let x = 1:
#1^2 - 2 = -1/4(1^2 + 3) + (B -5/4)(1 + 1)#
#-1 = -1 + (2B -5/2)#
#B = 5/4#
#int(x^2 - 2)/((x + 1)(x^2 + 3))dx = -1/4int1/(x + 1)dx + 5/4intx/(x^2 + 3)dx - 5/4int1/(x^2 + 3)dx#
#int(x^2 - 2)/((x + 1)(x^2 + 3))dx = -1/4ln|x + 1| + 5/4ln|x^2 + 3| - (5sqrt(3))/12tan^-1(x/sqrt(3))#