How do you express #(x^4+6)/(x^5+7x^3)# in partial fractions?

1 Answer
Oct 31, 2016

The result is #=(-6/49)/x+(6/7)/x^3+(55/49x)/(x^2+7)#

Explanation:

Let's factorise the denominator #x^5+7x^3=x^3(x^2+7)#
So #(x^4+6)/(x^3(x^2+7))=A/x+B/x^2+C/x^3+(Dx+E)/(x^2+7)#
#=(Ax^2(x^2+7)+Bx(x^2+7)+C(x^2+7)+(Dx+E)(x^2+7))/(x^3(x^2+7))#
#x^4+6=Ax^2(x^2+7)+Bx(x^2+7)+C(x^2+7)+(Dx+E)x^3#
#x=0##=>##6=7C##=>##C=6/7#
coefficients #x^4##=>##1=A+D#
coefficients #x^3##=>##0=B+E#
coefficients #x^2##=>##0=7A+C#
coefficients of #x##=>##0=7B#
#E=0#
#A=-C/7=-6/49#
#B=0#
#D=1-A=1+6/49=55/49#
Finally we have
#(x^4+6)/(x^3(x^2+7))=(-6/49)/x+(6/7)/x^3+(55/49x)/(x^2+7)#