How do you write the partial fraction decomposition of the rational expression # 5/(x^2-1)^2#?

1 Answer
Nov 1, 2016

The answer is #=5/(4(x+1)^2)+5/(4(x+1))+5/(4(x-1)^2)-5/(4(x-1))#

Explanation:

Let's factorise the denominator #(x^2-1)^2=(x+1)(x-1(x+1)(x-1)#
So #5/(x^2-1)^2=5/((x+1)^2(x-1)^2)#
#=A/(x+1)^2+B/(x+1)+C/(x-1)^2+D/(x-1)#
#5=##A(x-1)^2+B(x+1)(x-1)^2+C(x+1)^2+D(x-1)(x+1)^2#
Let #x=1# then #5=4C##=>##C=5/4#
#x=-1# then #5=4A##=>##A=5/4#
#x=0 ##=># #5=A+B+C-D#
#B-D=5-5/4-5/4=5/2#
Coefficients of #x^3# then #0=B+D#
#B=5/4# and #D=-5/4#
So #=A/(x+1)^2+B/(x+1)+C/(x-1)^2+D/(x-1)#
#=5/(4(x+1)^2)+5/(4(x+1))+5/(4(x-1)^2)-5/(4(x-1))#