How to find the definite integral using the limit definition?

#int_1^4x^3-4dx#

Please explain in detail, I don't understand the process

1 Answer
Nov 1, 2016

Here is a limit definition of the definite integral. (I'd guess it's the one you are using.)

#int_a^b f(x) dx = lim_(nrarroo) sum_(i=1)^n f(x_i)Deltax#.

Where, for each positive integer #n#, we let #Deltax = (b-a)/n#

And for #i=1,2,3, . . . ,n#, we let #x_i = a+iDeltax#. (These #x_i# are the right endpoints of the subintervals.)

I prefer to do this type of problem one small step at a time.

#int_1^4 (x^3-4) dx#.

Find #Delta x#

For each #n#, we get

#Deltax = (b-a)/n = (4-1)/n = 3/n#

Find #x_i#

And #x_i = a+iDeltax = 1+i3/n = 1+(3i)/n#

Find #f(x_i)#

#f(x_i) = (x_i)^3-4 = (1+(3i)/n)^3-4#

# = (1+9i/n+27i^2/n^2+27i^3/n^3) - 4#

# = -3+9i/n+27i^2/n^2+27i^3/n^3#

Find and simplify #sum_(i=1)^n f(x_i)Deltax # in order to evaluate the sums.

#sum_(i=1)^n f(x_i)Deltax = sum_(i=1)^n( -3+9i/n+27i^2/n^2+27i^3/n^3) 3/n#

# = sum_(i=1)^n( -9/n+27i/n^2+81i^2/n^3+81i^3/n^4)#

# =sum_(i=1)^n ( -9/n)+sum_(i=1)^n(27i/n^2)+sum_(i=1)^n(81i^2/n^3)+sum_(i=1)^n(81i^3/n^4) #

# =-9/nsum_(i=1)^n ( 1)+27/n^2sum_(i=1)^n(i)+81/n^3sum_(i=1)^n(i^2)+81/n^4sum_(i=1)^n(i^3) #

Evaluate the sums

# = -9/n(n) +27/n^2((n(n+1))/2) + 81/n^3((n(n+1)(2n+1))/6) +81/n^4( (n^2(n+1)^2)/4) #

(We used summation formulas for the sums in the previous step.)

Rewrite before finding the limit

#sum_(i=1)^n f(x_i)Deltax = -9/n(n) +27/n^2((n(n+1))/2) + 81/n^3((n(n+1)(2n+1))/6) +81/n^4( (n^2(n+1)^2)/4) #

# = -9 +27/2((n(n+1))/n^2) + 81/6((n(n+1)(2n+1))/n^3) +81/4( (n^2(n+1)^2)/n^4)#

Now we need to evaluate the limit as #nrarroo#.

#lim_(nrarroo) ((n(n+1))/n^2) = 1#

#lim_(nrarroo) ((n(n+1)(2n+1))/n^3) = 2#

#lim_(nrarroo) ((n^2(n+1)^2)/n^4) = 1#

To finish the calculation, we have

#int_0^1 x^2 dx = lim_(nrarroo) (-9 +27/2((n(n+1))/n^2) + 27/2((n(n+1)(2n+1))/n^3) +81/4( (n^2(n+1)^2)/n^4))#

# = -9+27/2(1) + 81/6(2)+81/4(1)#

# = -36/4+54/4+108/4+81/4 = 207/4#.