Question #c2366 Calculus Differentiating Exponential Functions Differentiating Exponential Functions with Other Bases 1 Answer sjc Nov 2, 2016 #(dy)/(dx)=2atan(ax+b)sec^2(ax+b)# Explanation: #y=tan^2(ax+b)# #u=ax+b=>(du)/(dx)=a# #y=tan^2u=>(dy)/(du)=2tanusec^2u# #(dy)/(dx)=(dy)/(du)xx(du)/(dx)# #(dy)/(dx)=(2tanusec^2u)xxa# #(dy)/(dx)=2atan(ax+b)sec^2(ax+b)# Answer link Related questions How do I find #f'(x)# for #f(x)=5^x# ? How do I find #f'(x)# for #f(x)=3^-x# ? How do I find #f'(x)# for #f(x)=x^2*10^(2x)# ? How do I find #f'(x)# for #f(x)=4^sqrt(x)# ? What is the derivative of #f(x)=b^x# ? What is the derivative of 10^x? How do you find the derivative of #x^(2x)#? How do you find the derivative of #f(x)=pi^cosx#? How do you find the derivative of #y=(sinx)^(x^3)#? How do you find the derivative of #y=ln(1+e^(2x))#? See all questions in Differentiating Exponential Functions with Other Bases Impact of this question 1250 views around the world You can reuse this answer Creative Commons License