What is the limit of #(e^t - 1) / t^3# as t approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Alberto P. Nov 8, 2016 graph{(e^x-1)/x^3 [-6.79, 13.21, -1.48, 8.52]} #lim_(t->0)(e^t-1)/t^3=+oo# Explanation: #lim_(t->0)(e^t-1)/t^3=lim_(t->0)e^t/(3t^2)=+oo# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 9602 views around the world You can reuse this answer Creative Commons License