This is my thoughts:
# U_(n+1) =sqrt(U_nV_n) #
# V_(n+1) = 1/2(U_n+V_n) #
Let # delta(n) = V_n - U_n #
Assume the limit exists, and that:
# lim _(n rarr oo) (V_n - U_n) = epsilon #
# :. lim _(n rarr oo) delta(n) = epsilon #
Then it must also be the case that:
# :. lim _(n rarr oo) delta(n+1) = epsilon #
# :. lim _(n rarr oo) (delta(n+1))/(delta(n)) = 1 #
Now:
# delta(n+1) = V_(n+1) - U_(n+1) #
# delta(n+1) = (U_n+V_n)/2 - sqrt(U_nV_n) #
# (delta(n+1))/(delta(n)) = { (U_n+V_n)/2 - sqrt(U_nV_n) } / ( V_n - U_n ) = 1 #
# (U_n+V_n)/2 - sqrt(U_nV_n) = V_n - U_n #
# U_n+V_n - 2sqrt(U_nV_n) = 2V_n - 2U_n #
# 3U_n-V_n = 2sqrt(U_nV_n) #
# (3U_n-V_n)^2 = (2sqrt(U_nV_n))^2 #
# 9U_n^2 -6U_nV_n + V_n^2 = 4U_nV_n #
# 9U_n^2 -10U_nV_n + V_n^2 = 0 #
# (9U_n - V_n)( U_n - V_n ) = 0 #
# 9U_n - V_n = 0 => U_n = 1/9V_n #
# U_n - V_n = 0 => U_n = V_n #
Not sure how this helps, but I welcome comments