How do you find the limit #((1-x)^(1/4)-1)/x# as #x->0#?
2 Answers
Explanation:
According to the binomial expansion we have
Here
Then
Another approach is rationalizing
Multiply by the conjugate of the numerator over itself.
Explanation:
For positive integer
So
# = lim_(xrarr0) ((1-x)-1)/(x((1-x)^(3/4)+(1-x)^(2/4)+(1-x)^(1/4)+1))#
# = lim_(xrarr0) (-x)/(x((1-x)^(3/4)+(1-x)^(2/4)+(1-x)^(1/4)+1))#
# = lim_(xrarr0) (-1)/((1-x)^(3/4)+(1-x)^(2/4)+(1-x)^(1/4)+1)#
# = (-1)/((1-0)^(3/4)+(1-0)^(2/4)+(1-0)^(1/4)+1)#
# = (-1)/4#