How do you find the definite integral for: #xe^(x^2 + 2) # for the intervals #[0, 2]#?

1 Answer
Nov 21, 2016

#I=int_0^2xe^(x^2+2)dx=1/2e^2(e^4-1)#

Explanation:

#I=int_0^2xe^(x^2+2)dx#

Use the substitution #u=x^2+2#. This implies that #du=2xdx#. When we change variables, we will also have to change the bounds. To do this, take the current bounds and plug them into #u=x^2+2#.

#I=1/2int_0^2e^(x^2+2)(2xdx)=1/2int_2^6e^udu#

The integral of #e^u# is itself:

#I=1/2[e^u]_2^6=1/2(e^6-e^2)=1/2e^2(e^4-1)#