How do you find all points of inflection given #y=-x^4+3x^2-4#?

1 Answer
Nov 25, 2016

#(1,-2) and (-1,-2)" " #are two inflection points of the given function.

Explanation:

The inflection points of a function is determined by computing
#" "#
the second derivative of #y# then solving for #color(blue)(y''=0)#.
#" "#
#y=-x^4+3x^2-4#
#" "#
#y'=-4x^3+6x#
#" "#
#y''=-12x^2+6#
#" "#
To find the inflection points we would solve the equation:
#" "#
#color(blue)(y''=0)#
#" "#
#rArr-12x^2+6=0#
#" "#
#rArr-12(x^2-1)=0#
#" "#
#rArr-12(x-1)(x+1)=0#
#" "#
#rArrx-1=0rArrx=1" "#
#" "#
Or
#" "#
#x+1=0rArrx=-1#
#" "#
The ordinate of the point of abscissa #x=1# is:
#" "#
# y_((x=1))=-1^4+3(1)^2-4=-1+3-4=-2#
#" "#
The ordinate of the point of abscissa #x=-1# is:
#" "#
# y_((x=-1))=-(-1)^4+3(-1)^2-4=-1+3-4=-2#
#" "#
Hence,
#" "#
#(1,-2) and (-1,-2)" "# are two inflection points of the given function.