How do you find the nth Taylor polynomials for f(x) = sin x centered about a=0?
1 Answer
# sinx=x/(1!) - x^3/(3!) + x^5/(5!) - x^7/(7!) + ... #
or in sigma notation
# sinx= sum_(n=0)^oo (-1)^n/((2n+1)!)x^(2n+1) #
Explanation:
To be pedantic, a Taylor Series centred about
# f(x) = f(0) +f'(0)x/(1!) + f''(0)x^2/(2!) + f'''(0)x^3/(3!) + ... #
Or in sigma notation:
# f(x) = sum_(n=0)^oo f^((n))x^n/(n!) #
So to find the series for
And so you can see we get an alternating pattern of
# sinx=x/(1!) - x^3/(3!) + x^5/(5!) - x^7/(7!) + ... #
or in sigma notation
# sinx= sum_(n=0)^oo (-1)^n/((2n+1)!)x^(2n+1) #