How do you find the indefinite integral of #int (x^3-3x^2+4x-9)/(x^2+3)#?

1 Answer
Nov 26, 2016

The answer is #=x^2/2-3x+1/2ln(x^2+3)+C#

Explanation:

Let's perform the long division

#color(white)(aaaa)##x^3-3x^2+4x-9##color(white)(aaaa)##∣##x^2+3#

#color(white)(aaaa)##x^3##color(white)(aaaaaa)##+3x##color(white)(aaaaaaaa)##∣##x-3#

#color(white)(aaaaa)##0-3x^2+x-9#

#color(white)(aaaaaaa)##-3x^2+x-9#

#color(white)(aaaaaaaaa)##-0+x+0#

So,

#(x^3-3x^2+4x-9)/(x^2+3)=(x-3)+x/(x^2+3)#

#int((x^3-3x^2+4x-9)dx)/(x^2+3)=int(x-3)dx+int(xdx)/(x^2+3)#

#=x^2/2-3x+1/2int(2xdx)/(x^2+3)#

Let #u=x^2+3#, #du=2xdx#

#int(2xdx)/(x^2+3)=int(du)/u=lnu= ln(x^2+3)#

#int((x^3-3x^2+4x-9)dx)/(x^2+3)=x^2/2-3x+1/2ln(x^2+3)+C#