How do you integrate #int xe^-x# by integration by parts method?
1 Answer
Nov 27, 2016
Explanation:
We have the integral
#{(u=x,=>,du=dx),(dv=e^-xdx,=>,v=-e^-x):}#
To go from
So:
#intxe^-xdx=uv-intudv=-xe^-x+inte^-xdx#
We've already done this integral:
#intxe^-xdx=-xe^-x-e^-x#
#intxe^-xdx=-e^-x(x+1)+C#