How do you find the limit #(1/t+1/sqrtt)(sqrt(t+1)-1)# as #t->0^+#?
1 Answer
Explanation:
Let
# :. L = lim_(t rarr 0^+) ( 1/t + 1/t^(1/2) )( (t+1)^(1/2) - 1 ) #
# :. L = lim_(t rarr 0^+) ( 1/t + t^(1/2)/t )( (t+1)^(1/2) - 1 ) #
# :. L = lim_(t rarr 0^+) ( ( 1 + t^(1/2) )( (t+1)^(1/2) - 1 ) ) / t#
This is now in the indeterminate form
# :. L = lim_(t rarr 0^+) ( ( 1 + t^(1/2) ) d/dt( (t+1)^(1/2) - 1 ) + d/dt( 1 + t^(1/2) ) ( (t+1)^(1/2) - 1 ) ) /1#
# :. L = lim_(t rarr 0^+) {( 1 + t^(1/2) ) ( 1/2(t+1)^(-1/2) ) + ( 1/2t^(-1/2) ) ( (t+1)^(1/2) - 1 ) )} #
# :. L = lim_(t rarr 0^+) { ( 1 + sqrt(t) )/(2sqrt(t+1)) + ( sqrt( t+1) - 1 ) /(2sqrt(t) ) }#
Let
Then
We can evaluate
# :. L_1 =( 1+0) /(2sqrt(0+1)) =1/2 #
And I won't do the maths because it it is really tedious, but a couple more application of L'Hospital's Rule will show that
# L_2 = 0 #
Hence,
We can verify this by plotting a graph of the function
# f(x) = ( 1/x + 1/sqrt(x) )( sqrt(x+1) - 1 ) #
graph{( 1/x + 1/sqrt(x) )( sqrt(x+1) - 1 ) [-0.811, 1.3165, -0.191, 0.873]}