What is the limit of #(1+e^x)^(1/x)# as x approaches infinity?
1 Answer
Nov 29, 2016
Explanation:
#=lim_(x->oo)e^(ln(1+e^x)/x)#
#=e^(lim_(x->oo)ln(1+e^x)/x)#
The above step is valid due to the continuity of
Evaluating the limit in the exponent, we have
#=lim_(x->oo)(d/dxln(1+e^x))/(d/dxx)#
The above step follows from apply L'Hopital's rule to a
#=lim_(x->oo)(e^x/(1+e^x))/1#
#=lim_(x->oo)e^x/(1+e^x)#
#=lim_(x->oo)1/(1+1/e^x)#
#=1/(1+1/oo)#
#=1/(1+0)#
#=1#
Substituting this back into the exponent, we get our final result:
#=e^1#
#=e#