How do you differentiate #y= (3+2^x)^x#?

1 Answer
Nov 29, 2016

# dy/dx = (3+2^x)^x((ln(2)x2^x)/(3+2^x) + ln (3+2^x))#

Explanation:

The simplest method is to use what is known as logarithmic differentiation. We take (Natural) logarithms of both sides and the use implicit differentiation:

# y = (3+2^x)^x #

Taking logarithms we get:

# lny = ln {(3+2^x)^x} #
# lny = xln (3+2^x) #

Then we can differentiate the LHS Implicitly, and the RHS using the product rule to get:
# 1/ydy/dx = (x)(d/dxln (3+2^x)) + (ln (3+2^x))(1) #
# :. 1/(3+2^x)^x dy/dx = xd/dxln (3+2^x) + ln (3+2^x) ... [1]#

To deal with #d/dxln (3+2^x)# we use the chain rule:

#\ \ \ \ \ d/dxln (3+2^x) = 1/(3+2^x) d/dx(3+2^x)#
# :. d/dxln (3+2^x) = 1/(3+2^x) ln(2)2^x #
# :. d/dxln (3+2^x) = (ln(2)2^x)/(3+2^x) #

Substituting the last result into[1] we get:

# 1/(3+2^x)^x dy/dx = (ln(2)x2^x)/(3+2^x) + ln (3+2^x)#
# dy/dx = (3+2^x)^x((ln(2)x2^x)/(3+2^x) + ln (3+2^x))#