Evaluate the limit? : # lim_(x rarr oo)(3x+1)/(|x|+2) #

1 Answer
Nov 30, 2016

# lim_(x rarr oo)(3x+1)/(|x|+2) = 3#

Explanation:

As #x rarr oo => x>0 # so:
# \ \ \ \ \ lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)(3x+1)/(x+2) #
# :. lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)(3x+1)/(x+2)*(1/x)/(1/x) #
# :. lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)((3x+1)/x)/((x+2)/x) #
# :. lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)(3+1/x)/(1+2/x) #

As #x rarr 8 => 1/x rarr 0 #, Hence
# \ \ \ \ \ lim_(x rarr oo)(3x+1)/(|x|+2) = (3+0)/(1+0) = 3#

We can verify this by looking at the graph of #y=(3x+1)/(|x|+2)#

graph{(3x+1)/(|x|+2) [-5, 20, -3.5, 3.5]}