Does #a_n=n*{(3/n)^(1/n)} #converge? If so what is the limit?
1 Answer
Dec 2, 2016
Explanation:
#=lim_(n->oo)e^ln(n(3/n)^(1/n))#
#=lim_(n->oo)e^(ln(n)+ln((3/n)^(1/n)))#
#=lim_(n->oo)e^(ln(n)+1/nln(3/n))#
#=e^(lim_(n->oo)ln(n)+ln(3/n)/n)#
Where the final step follows from the continuity of
#=lim_(n->oo)ln(3)/n+ln(n)(1-1/n)#
As
#ln(3)/n -> 0# #ln(n) -> oo# #1-1/n -> 1#
Substituting this back in, we get
#=e^oo#
#=oo#
Thus