How do you evaluate the definite integral #int (2x-1) dx# from [1,3]? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer sjc Dec 3, 2016 6 Explanation: #int_1^3(2x-1)dx# #=[(cancel(2)x^2)/cancel(2)-x]_1^3# #=[x^2-x]^3-[x^2-x]_1# #=3^2-3-cancel((1^2-1))^0# #=6# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 27663 views around the world You can reuse this answer Creative Commons License