What is the derivative of #arctan [(1-x)/(1+x)]^(1/2)#?

1 Answer
Dec 4, 2016

# dy/dx = -1/(2(1+x)sqrt((1-x)/(1+x)))#

Explanation:

When tackling the derivative of inverse trig functions. I prefer to rearrange and use Implicit differentiation as I always get the inverse derivatives muddled up, and this way I do not need to remember the inverse derivatives. If you can remember the inverse derivatives then you use the chain rule.

Let #y=arctan sqrt((1-x)/(1+x)) <=> tany=sqrt((1-x)/(1+x)) #
# :. tan^2y=(1-x)/(1+x) #

Differentiate Implicitly, and applying product rule:

# 2tanysec^2ydy/dx = ((1+x)(-1) - (1-x)(1))/(1+x)^2#
# :. 2tanysec^2ydy/dx = (-1-x-1+x)/(1+x)^2#
# :. 2tanysec^2ydy/dx = -2/(1+x)^2#
# :. tanysec^2ydy/dx = -1/(1+x)^2#
# :. sqrt((1-x)/(1+x))sec^2ydy/dx = -1/(1+x)^2# ..... [1]

Using the #sec"/"tan# identity;

# (1-x)/(1+x)+1=sec^2y #
# :. sec^2y = ((1-x)+(1+x))/(1+x)#
# :. sec^2y = 2/(1+x)#

Substituting into [1]
# sqrt((1-x)/(1+x))(2/(1+x))dy/dx = -1/(1+x)^2#
# :. 2sqrt((1-x)/(1+x))dy/dx = -1/(1+x)#
# :. dy/dx = -1/(2(1+x)sqrt((1-x)/(1+x)))#