What is the derivative of #arctan [(1-x)/(1+x)]^(1/2)#?
1 Answer
Explanation:
When tackling the derivative of inverse trig functions. I prefer to rearrange and use Implicit differentiation as I always get the inverse derivatives muddled up, and this way I do not need to remember the inverse derivatives. If you can remember the inverse derivatives then you use the chain rule.
Let
Differentiate Implicitly, and applying product rule:
# 2tanysec^2ydy/dx = ((1+x)(-1) - (1-x)(1))/(1+x)^2#
# :. 2tanysec^2ydy/dx = (-1-x-1+x)/(1+x)^2#
# :. 2tanysec^2ydy/dx = -2/(1+x)^2#
# :. tanysec^2ydy/dx = -1/(1+x)^2#
# :. sqrt((1-x)/(1+x))sec^2ydy/dx = -1/(1+x)^2# ..... [1]
Using the
# (1-x)/(1+x)+1=sec^2y #
# :. sec^2y = ((1-x)+(1+x))/(1+x)#
# :. sec^2y = 2/(1+x)#
Substituting into [1]