How do you evaluate #\int _ { 0} ^ { 1} \frac { x d x } { \sqrt { x ^ { 2} + 1} }#?

1 Answer
Dec 5, 2016

#int_0^1(xdx)/sqrt(x^2+1)=sqrt2-1#

Explanation:

#I=int_0^1(xdx)/sqrt(x^2+1)#

We will use the substitution #u=x^2+1=>du=2xdx#. We will need to multiply the integrand by #2#. Once we do this, then we can substitute the variables.

When we substitute, we will also have to change the bounds using #u=x^2+1# as follows:

  • #x=0" "=>" "u=0^2+1=1#
  • #x=1" "=>" "u=1^2+1=2#

So we get:

#I=1/2int_0^1(2xdx)/sqrt(x^2+1)=1/2int_1^2(du)/sqrtu=1/2int_1^2u^(-1/2)du#

Now using #intu^ndu=u^(n+1)/(n+1)+C#:

#I=1/2[u^(1/2)/(1/2)]_1^2=[sqrtu]_1^2=sqrt2-1#