How do you find the Riemann sum for #f(x) = x^2 + 3x# over the interval [0, 8]?

1 Answer
Dec 7, 2016

The formula looks like:

#lim_(n->oo)sum_(i=1)^(n)f(x_i)Deltax = int_a^bf(x)dx#

Your integral will look like:

#int_0^8(x^2+3x)dx#

We can use this information to plug in values into our Riemann sum formula.

#Deltax=(b-a)/n#

#x_i=a+iDeltax#

Therefore:

#Deltax=(8-0)/n=8/n#

#x_i=0+i(8/n)=(8i)/n#

So, as a Riemann sum:

#lim_(n->oo)sum_(i=1)^(n)(8/n)[((8i)/n)^2+3((8i)/n)]#

#=lim_(n->oo)sum_(i=1)^(n)(8/n)[(64/n^2)i^2+(24/n)i]#

Note: Since #i# is our variable and #n# is our constant, we can pull those to the front.

#lim_(n->oo)[512/n^3sum_(i=1)^(n)i^2+192/n^2sum_(i=1)^ni]#

Recall from summation formulas:

#sum_(i=1)^(n)i=((n(n+1))/2)#
#sum_(i=1)^(n)i^2=((n(n+1)(2n+1))/6)#

So, we'll have an awesome looking function:

#lim_(n->oo)[512/n^3((n(n+1)(2n+1))/6)+192/n^2((n(n+1))/2)]#

Now, since the degree of the denominators are the same as the numerators, it will result in the sum of two ratios.

#=lim_(n->oo)[(512*2)/6+192/2]=800/3~~266.7#