Let's do a long division
#color(white)(aaaa)##-x^3+##color(white)(aaaaaaaaa)##9x-1##color(white)(aa)##∣##-2x^2-3x+5#
#color(white)(aaaa)##-x^3+##color(white)(a)##-3/2x^2+5/2x##color(white)(aaaaa)##∣##x/2-3/4#
#color(white)(aaaaaaa)##0+##color(white)(a)##+3/2x^2+13/2x-1#
#color(white)(aaaaaaaaaaa)####color(white)(aaa)##3/2x^2+9/4x-15/4#
#color(white)(aaaaaaaaaaa)####color(white)(aaaaa)##0+17/4x+11/4#
#-2x^2-3x+5=-(2x+5)(x-1)#
So,
#(-x^3+9x-1)/(-2^2-3x+5)=(x/2-3/4)+(17/4x+11/4)/(-2x^2-3x+5)#
#=(x/2-3/4)-(17/4x+11/4)/((2x+5)(x-1))#
Let's do a partial fraction decomposition
#(17/4x+11/4)/((2x+5)(x-1))=A/(2x+5)+B/(x-1)#
#=(A(x-1)+B(2x+5))/((2x+5)(x-1))#
#17/4x+11/4=A(x-1)+B(2x+5)#
Let #x=1#, #=>#, #28/4=7B#, #=>#, #B=1#
Let #x=0#,#=>#,#11/4=-A+5B#
#A=5-11/4=9/4#
So,
#int((-x^3+9x-1)dx)/(-2^2-3x+5)#
#=int(x/2-3/4)dx-9/4intdx/(2x+5)-intdx/(x-1)#
#=x^2/4-3/4x-9/8ln(∣2x+5∣)-ln(∣x-1∣)+C#