How do you evaluate the definite integral #int (x^3+x-6)dx# from [2,4]?

1 Answer
Dec 9, 2016

I found: #int_2^4(x^3+x-6)dx=54#

Explanation:

First we can evaluate the integral and then substitute the extremes of integration and subtract the values obtained (Fundamental Theorem of Calculus):
#int(x^3+x-6)dx=# separate:
#=intx^3dx+intxdx-int6dx=#
integgrate each one:
#=x^4/4+x^2/2-6x#
For:

#x=4#
we get:#=4^4/4+4^2/2-6*4=64-8-24=48#

#x=2#
we get:#=2^4/4+2^2/2-6*2=4+2-12=-6#

Finally, subtract the two values:
#48-(-6)=54#

So:
#int_2^4(x^3+x-6)dx=54#

This value represents the Area below the curve defined by your function between #x=2# and #x=4#:
enter image source here