How do you solve #\frac { 4} { 5x } = \frac { 3} { 2x - 1}#?

1 Answer
Dec 9, 2016

#x = -4/7#

Explanation:

First, to eliminate the fractions and to keep the equation balanced you need to multiply each side of the equation by the value of each of the denominators:

#((5x)(2x - 1)4)/(5x)=((5x)(2x - 1)3)/(2x-1)#

#(cancel((5x))(2x - 1)4)/cancel((5x))=((5x)cancel((2x - 1))3)/cancel((2x-1))#

#(2x - 1)4)=(5x)3#

Next, expand the terms within parenthesis:

#8x - 4 = 15x#

Now you can solve for #x# while keeping the equation balanced:

#8x - 8x - 4 = 15x - 8x#

#0 - 4 = (15 - 8)x#

#-4 = 7x#

#(-4)/7 = (7x)/7#

#-4/7 = (cancel(7)x)/cancel(7)#

#x = -4/7#