Question #9106d

1 Answer
Dec 19, 2016

a)
Given #L = t^2(dotx^2/2-x^6/6)# the movement equations are obtained by doing

#d/dt((partial L)/(partial dot x))-(partial L)/(partial x)=0# giving

#ddot x = -(2dot x/t+x^5)#

b)

The condition for invariance of #int L dt# is given by

#(partial L)/(partial t) tau+(partial L)/(partial x) xi + (partial L)/(partial dot x)((d xi)/(dt)-dot x (d tau)/(dt))+L(d tau)/(dt)=0#

Now expanding the total derivatives #(d xi)/(dt), (d tau)/(dt)# and substituting we arrive at

#(partial L)/(partial t)tau+(partial L)/(partial x)xi+(partial L)/(partial dot x)((partial xi)/(partial t)+(partial xi)/(partial x)dot x-dot x(partial tau)/(partial t)-dot x^2 (partial tau)/(partial x))+L((partial tau)/(partial t)+(partial tau)/(partial x)dot x)=0#

From #L# we have

#(partial L)/(partial t) = t(dot x^2-1/3x^6)#
#(partial L)/(partial x) =-t^2x^5#
#(partial L)/(partial dot x) =t^2 dot x#

Substituting and grouping the coefficients associated to the powers of #dot x# and equating to zero we have

#{ ((x tau)/3+t xi + t x/6 (partial tau)/(partial t)=0), ((partial xi)/(partial t)-x^6/6 (partial tau)/(partial x) = 0), (t tau+t^2(partial xi)/(partial x) - t^2/2 (partial tau)/(partial t) = 0),((partial tau)/(partial x)=0):}#

Now from the last equation, #tau=tau(t)# substituting into the second equation #xi = xi(x)# remaining the system of differential equations

#{ (x/3 tau+t xi + t/6x (d tau)/(dt)=0), (t tau+t^2 (d xi)/(dx)-t^2/2 (d tau)/(dt)=0):}#

From inspection, the transformation is

#tau=t# and #xi = -x/2# so

#int L dt# is invariant under the transformation group

#t'=t+epsilon t#
#x'=x-1/2epsilon x#

c) Suppose that #L(t,x,dot x)# is variationally invariant on #t_i,t_f# under the former transformation. Then

#(partial L)/(partial dot x) xi+(L-dot x (partial L)/(partial dot x))tau=C^(te)#

Substituting #(partial L)/(partial dot x), L,xi, tau# we get

#(t^2x dot x)/2+(t^3 dot x^2)/2+(t^3x^6)/6 = C^(te)#