How do you find the standard deviation of 3, 7, 4, 6, and 5?

1 Answer
Dec 19, 2016

The standard deviation is #sigma=sqrt(2) ~~1.41#

Explanation:

The standard deviation of a data set is given as:

#sigma=sqrt(1/NxxSigma_{i=1}^N(x_i-bar(x))^2)#

where:
#N#- number of data;
#bar(x)# - mean value;
#x_i# - data in data set

To calculate the deviation we can use the following algorythm:

  1. Calculate mean #bar(x)#
  2. Calculate #(x_i-bar(x))^2# for all #i#
  3. Add all values calculated in #2#.
  4. Divide the sum by #N#
  5. Get square root to calculate the deviation.

Here we have:

  1. #bar(x)=(3+4+5+6+7)/5=25/5=5#
  2. #(3-5)^2=(-2)^2=4#
    #(4-5)^2=(-1)^2=1#
    #(5-5)^2=0#
    #(6-5)^2=1^2=1#
    #(7-5)^2=2^2=4#
  3. Sum is #4+1+0+1+4=10#
  4. #10-:5=2#
  5. #sigma=sqrt(2)~~1.41#