What are all the possible rational zeros for #f(x)=x^6-64#?
2 Answers
"Possible" rational zeros:
#+-1, +-2, +-4, +-8, +-16, +-32, +-64#
Actual zeros:
#+-2# ,#-1+-sqrt(3)i# ,#1+-sqrt(3)i#
Explanation:
By the rational roots theorem, any rational zeros of
That means that the only "possible" rational zeros are:
#+-1, +-2, +-4, +-8, +-16, +-32, +-64#
In practice we can factor this sextic as a difference of squares, difference of cubes and sum of cubes, allowing us to find the Real zeros and quadratics for the Complex zeros.
We will use the following identities:
#a^2-b^2=(a-b)(a+b)#
#a^3-b^3=(a-b)(a^2+ab+b^2)#
#a^3+b^3=(a+b)(a^2-ab+b^2)#
So:
#x^6-64 = ((x^3)^2-8^2)#
#color(white)(x^6-64) = (x^3-8)(x^3+8)#
#color(white)(x^6-64) = (x^3-2^3)(x^3+2^3)#
#color(white)(x^6-64) = (x-2)(x^2+2x+4)(x+2)(x^2-2x+4)#
Hence rational zeros:
#x = +-2#
The remaining quadratics have negative discriminants, so Complex zeros, but we can factor them using the difference of squares identity as follows:
#x^2+2x+4 = x^2+2x+1+3#
#color(white)(x^2+2x+4) = (x+1)^2-(sqrt(3)i)^2#
#color(white)(x^2+2x+4) = ((x+1)-sqrt(3)i)((x+1)+sqrt(3)i)#
#color(white)(x^2+2x+4) = (x+1-sqrt(3)i)(x+1+sqrt(3)i)#
Similarly:
#x^2-2x+4 = (x-1-sqrt(3)i)(x-1+sqrt(3)i)#
Hence Complex zeros:
#x = -1+-sqrt(3)i" "# and#" "x = 1+-sqrt(3)i#
These zeros form the vertices of a regular hexagon in the Complex plane:
graph{((x-2)^2+y^2-0.01)((x+2)^2+y^2-0.01)((x-1)^2+(y-sqrt(3))^2-0.01)((x-1)^2+(y+sqrt(3))^2-0.01)((x+1)^2+(y-sqrt(3))^2-0.01)((x+1)^2+(y+sqrt(3))^2-0.01)(x^2+y^2-4) = 0 [-5, 5, -2.5, 2.5]}
Explanation:
graph{x^6-64 [-3, 3, -500, 500]}
We can sort out rational zeros, from real zeros.
Use
Any
Here,
So, the zeros are given by
upon simplification, using De Moivre;e theorem
So, the real ( and , of course, rational ) zeros are
The complex zeros ( occurring in conjugate pairs ) are
Direcly, all-inclusive zeros can be listed as
The real roots