How do you solve the system of equations #9x - 4y = - 7# and #7x - 12y = 39#?

1 Answer
Dec 31, 2016

#x=-3# and #y=-5#

Explanation:

#9x-4y=-7#
#7x-12y=39#

From the first equation, we derive a value of #(-12y)#.

#9x-4y=-7#

Subtract #9x# from each side.

#-4y=-7-9x#

Multiply all terms by #3#.

#-12y=-21-27x#

In the second equation, substitute #-12y# with #(color(red)(-21-27x))# and simplify.

#7x-12y=39#

#7x-color(red)(21-27x)=39#

#-20x-21=39#

Add #21# to both sides.

#-20x=60#

Divide both sides by #-20#.

#x=-3#

In the first equation, substitute #x# with #color(blue)(-3)# and simplify.

#9x-4y=-7#

#9(color(blue)(-3))-4y=-7#

#-27-4y=-7#

Add #27# to both sides.

#-4y=20#

Divide both sides by #-4#.

#y=-5#