A triangle has two corners of angles #pi /8# and #(7pi)/12 #. What are the complement and supplement of the third corner?

1 Answer
Jan 5, 2017

#(5pi)/24" and " (17pi)/24#

Explanation:

The sum of the 3 angles in a triangle #=pi#

To calculate the third angle, subtract the sum of the 2 given angles from #pi#

#"third angle " =pi-(pi/8+(7pi)/12)#

#=pi-((3pi)/24+(14pi)/24)=pi-(17pi)/24#

#=(24pi)/24-(17pi)/24=(7pi)/24larrcolor(red)"third angle"#

An angle and it's #color(blue)"complement"# sum to #pi/2#

#"complement of " (7pi)/24=(pi/2-(7pi)/24)#

#=(12pi)/24-(7pi)/24=(5pi)/24larrcolor(red)"complement"#

An angle and it's #color(blue)"supplement"# sum to #pi#

#"supplement of " (7pi)/24=(pi-(7pi)/24)#

#=(24pi)/24-(7pi)/24=(17pi)/24larrcolor(red)"supplement"#

#color(blue)"As a check"#

#(7pi)/24+(5pi)/24=(12pi)/24=pi/2color(white)(x)✔︎#

#"and " (7pi)/24+(17pi)/24=(24pi)/24=picolor(white)(xx)✔︎#