How do you find #S_n# for the arithmetic series given #a_n=-53/12, d=-1/4, n=20#?

1 Answer
Jan 8, 2017

#-43 5/6" " ->" " 263/6#

Explanation:

#color(blue)("Consider the structure of an Arithmetic sequence")#

Let any one term count by #i#
Let any one term be #a_i#
Let the total count be #n#
Let the difference between terms be #d#
Let the sum of the series be #S_n#

Set #d=-1/4" "# then we have:

#a_i->a_1#
#a_i->a_2=a_1-1/4#
#a_i->a_3=a_1-1/4-1/4#
#a_i->a_4=a_1-1/4-1/4-1/4#
:
:

This implies that for any #a_i#

#a_i=a_1-1/4(i-1)#

Thus #color(brown)(a_n=a_1-1/4(n-1))color(green)(" "->" "a_20=-53/12=a_1-1/4(20-1))#

#=>a_1=-53/12+1/4(19)#

#=>a_1=1/3#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check: #a_20 = 1/3-1/4(19) = -53/12#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sum #S_n=" total count "xx"mean value"#

Mean value #->("first term + last term")/2#

#S_20=(20(1/3-53/12))/2 = -43 5/6 -> 263/6#