How do you find the antiderivative of #f(x)=1/4x^4-2/3x^2+4#?

2 Answers
Jan 10, 2017

#intf(x)dx=int(1/4x^4-2/3x^2+4)dx#

#=1/4intx^4dx-2/3intx^2dx+4intx^0dx#

#=1/4{x^(4+1)/(4+1)}-2/3{x^(2+1)/(2+1)}+4{x^(0+1)/(0+1)}#

#=1/20x^5-2/9x^3+4x+C,#

# because, intx^ndx=x^(n+1)/(n+1)+c.#

Enjoy Maths.!

Jan 10, 2017

#1/20x^5-2/9x^3+4x+c#

Explanation:

Integrate each term using the #color(blue)"power rule for integration"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(int(ax^n)=a/(n+1)x^(n+1))color(white)(2/2)|)))#

#rArrint(1/4x^4-2/3x^2+4)dx#

#=(1/4)/5x^5-(2/3)/3x^3+4x+c#

#=1/20x^5-2/9x^3+4x+c#

where c is the constant of integration.