How do you find the coordinates of the points on the curve #x^2-xy+y^2=9# where the tangent line is horizontal?
1 Answer
Jan 10, 2017
Explanation:
# x^2 - xy +y^2 = 9 #
Differentiating Implicitly (and applying the Product rule) gives:
# 2x - { (x)(dy/dx) + (1)(y) } + 2ydy/dx = 0 #
# :. 2x - xdy/dx - y + 2ydy/dx = 0 #
The tangent is horizontal at a turning point ( ie
# => 2x - 0 - y + 0 = 0 #
# :. y=2x #
Subs
# => x^2 - x(2x) +(2x)^2 = 9 #
# :. x^2 - 2x^2+4x^2=9 #
# :. 3x^2 =9 #
# :. x^2 =3 #
# :. x =+-sqrt(3) #
Hence the coordinates are
graph{x^2 - xy +y^2 = 9 [-10, 10, -5, 5]}