How do you evaluate the integral #int x^2arctanx#?

2 Answers
Jan 11, 2017

The answer is #=x^3/3arctanx-color(blue)(1/6(-ln(1+x^2)+(1+x^2)))+C#

Explanation:

#sin^2x+cos^2x=1#, #=>#, #tan^2x+1=sec^2x#

If #y=arctanx#

#tany=x#

#(tany)'=x'#

#sec^2ydy/dx=1#, #=>#, #dy/dx=1/sec^2y=1/(1+x^2)#
We use integration by parts

#intuv'dx=uv-intu'vdx#

#u=arctanx#, #=>#, #u'=1/(1+x^2)#

#v'=x^2#, #=>#, #v=x^3/3#

Therefore,

#intx^2arctanxdx=x^3/3arctanx-color(blue)(1/3int(x^3dx)/(1+x^2))#

Let, u=1+x^2#, #=>#,#du=2xdx#

#x^2=u-1#

so,

#color(blue)(1/3int(x^3dx)/(1+x^2))=color(blue)(1/6*int(u-1)/udu)#

#=color(blue)(1/6(int-(du)/u+intdu))#

#=color(blue)(1/6(-lnu+u))#

#=color(blue)(1/6(-ln(1+x^2)+(1+x^2)))#

Finally, we have

#intx^2arctanxdx=x^3/3arctanx-color(blue)(1/6(-ln(1+x^2)+(1+x^2)))+C#

#x^3/3arc tanx-x^2/6+1/6ln(x^2+1)+C#.

Explanation:

Let #I=intx^2arc tanxdx#

We will use the following Rule of Integration by Parts (IBP) :

# IBP : intuvdx=uintvdx-int[(du)/dxintvdx]dx.#

We take #u=arc tanx :. (du)/dx=1/(x^2+1)#, and,

#v=x^2 :. intvdx=x^3/3#

Hence, #I=x^3/3arc tanx-1/3intx^3/(x^2+1)dx=x^3/3arc tanx-1/3J,#

where, #J=intx^3/(x^2+1)dx=int(x^3+x-x)/(x^2+1)dx#

#=int{x(x^2+1)}/(x^2+1)dx-1/2int(2x)/(x^2+1)dx#

#=intxdx-1/2int{d/dx(x^2+1)}/(x^2+1)dx#

#:. J=x^2/2-1/2ln(x^2+1)#

Altogether, #I=x^3/3arc tanx-1/3{x^2/2-1/2ln(x^2+1)}, or, #

#I=x^3/3arc tanx-x^2/6+1/6ln(x^2+1)+C#.

The Later Integral of J has been directly obtained using the

#" Result : "int (f'(x))/f(x)dx=ln|f(x)|+c#, which can easily be

proved by the substitution #f(x)=t#.

Enjoy Maths.!