How do you evaluate the integral #int ln(x^2+x^3)#?
1 Answer
Jan 14, 2017
Explanation:
We have the integral:
#I=intln(x^2+x^3)dx#
We should apply integration by parts, which takes the form
Differentiating
#{(u=ln(x^2+x^3)" "=>" "du=(2x+3x^2)/(x^2+x^3)dx=(2+3x)/(x+x^2)dx),(dv=dx" "=>" "v=x):}#
So:
#I=uv-intvdu#
#I=xln(x^2+x^3)-int(2x+3x^2)/(x+x^2)dx#
#I=xln(x^2+x^3)-int(2+3x)/(1+x)dx#
Either perform long division on
#I=xln(x^2+x^3)-(3intdx-intdx/(x-1))#
#I=xln(x^2+x^3)-(3x-ln(abs(x-1)))#
#I=xln(x^2+x^3)+ln(abs(x-1))-3x+C#