How do you evaluate the integral #int arctansqrtx#?
1 Answer
Explanation:
#I=intarctan(sqrtx)dx#
Let
#I=intarctan(t)(2tdt)=int2tarctan(t)dt#
Now use integration by parts. Let:
#{(u=arctan(t)" "=>" "du=1/(t^2+1)dt),(dv=2tdt" "=>" "v=t^2):}#
Then:
#I=t^2arctan(t)-intt^2/(t^2+1)dt#
Rewriting the integrand as
#I=t^2arctan(t)-(intdt-int1/(t^2+1)dt)#
Both of which are common integrals:
#I=t^2arctan(t)-t+arctan(t)+C#
Returning to
#I=xarctan(sqrtx)-sqrtx+arctan(sqrtx)+C#
#I=(x+1)arctan(sqrtx)-sqrtx+C#