How do you evaluate the integral #int arctansqrtx#?

1 Answer
Jan 15, 2017

#intarctan(sqrtx)dx=(x+1)arctan(sqrtx)-sqrtx+C#

Explanation:

#I=intarctan(sqrtx)dx#

Let #t=sqrtx#. Finding #dx# in a usable form is simpler if we first write that #t^2=x#, which then implies that #2tdt=dx#. This way we can plug in #dx# into the integral straight away. These substitutions yield:

#I=intarctan(t)(2tdt)=int2tarctan(t)dt#

Now use integration by parts. Let:

#{(u=arctan(t)" "=>" "du=1/(t^2+1)dt),(dv=2tdt" "=>" "v=t^2):}#

Then:

#I=t^2arctan(t)-intt^2/(t^2+1)dt#

Rewriting the integrand as #(t^2+1-1)/(t^2+1)=(t^2+1)/(t^2+1)-1/(t^2+1)=1-1/(t^2+1)# we see that

#I=t^2arctan(t)-(intdt-int1/(t^2+1)dt)#

Both of which are common integrals:

#I=t^2arctan(t)-t+arctan(t)+C#

Returning to #x# from #t=sqrtx#:

#I=xarctan(sqrtx)-sqrtx+arctan(sqrtx)+C#

#I=(x+1)arctan(sqrtx)-sqrtx+C#