Evaluate the limit: #lim_(theta-> 0)(1-cos theta)/(sin 2theta)#?

2 Answers
Jan 16, 2017

#"The Limit ="0.#

Explanation:

We will use the Identity # : sin2theta=2sinthetacostheta#

Note that, #(1-costheta)/(sin2theta)#

#={(1-costheta)/(sin2theta)}{(1+costheta)/(1+costheta)}#

#=(1-cos^2theta)/{(sin2theta)(1+costheta)}#

#=sin^2theta/{(2sinthetacostheta)(1+costheta)}#

#=(sintheta)/(2costheta(1+costheta))#

#=(sin0)/{(2)(cos0)(1+cos0)}=0/4#

#:." the Reqd. Lim.="0#

Jan 16, 2017

The limit is 0.

Explanation:

There are (at least) two ways to evaluate this limit. The first way is to apply l'Hopital's Rule, which says

If both #f(x) -> 0 " and " g(x) -> 0 " as " x -> 0#

then #lim_(x->0)(f(x))/(g(x))" "=" "lim_(x->0) (f'(x))/(g'(x))#

Since both #1-cos theta# and #sin 2theta# approach 0 as #theta -> 0#, we can apply l'Hopital's rule to get:

#color(white)= lim_(theta->0) (1-cos theta)/(sin 2theta)#

#=lim_(theta->0)sintheta/(2cos(2theta))#

After this step, we no longer have a "division by zero" limit, so we can just plug in 0 for #theta# to get our answer:

#= sin(0)/(2cos[2(0)])#

#= 0/(2(1))#

#= 0#

Another way possible is to use #sin 2theta = 2sintheta costheta#, and also multiply both numerator and denominator by #1+costheta# to achieve

#color(white)= lim_(theta->0) (1-cos theta)/(sin 2theta)#

#=lim_(theta->0) (1-cos theta)/(2sin theta cos theta) * (1+ cos theta)/(1 + costheta)#

#=lim_(theta->0) (1-cos^2 theta)/(2 sin theta cos theta (1 + costheta))#

By the Pythagorean identities, we have

#=lim_(theta->0) (sin^2 theta)/(2 sin theta cos theta (1 + costheta))#

#=lim_(theta->0) (sin theta)/(2 cos theta (1 + costheta))#

Once again, we no longer have a "division by zero", so we can directly substitute 0 for #theta# to get

#=(sin (0))/(2 cos (0) [1 + cos(0)])#

#=(0)/(2(1)[1 + 1])#

#=0#.

Here is a graph of the function #f(theta)=(1-cos theta)/(sin 2theta)#:
graph{(1-cos x)/(sin(2x)) [-10, 10, -5, 5]}